Advanced Experimental Design On “The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs”
نویسنده
چکیده
منابع مشابه
The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...
متن کاملA hybrid elitist pareto-based coordinate exchange algorithm for constructing multi-criteria optimal experimental designs
This paper presents a new Pareto-based coordinate exchange algorithm for populating or approximating the true Pareto front for multi-criteria optimal experimental design problems that arise naturally in a range of industrial applications. This heuristic combines an elitist-like operator inspired by evolutionary multi-objective optimization algorithms with a coordinate exchange operator that is ...
متن کاملAn Efficient Algorithm for Constructing Optimal Design of Computer Experiments
Metamodeling approach has been widely used due to the high computational cost of using high-fidelity simulations in engineering design. The accuracy of metamodels is directly related to the experimental designs used. Optimal experimental designs have been shown to have good “space filling” and projective properties. However, the high cost in constructing them limits their use. In this paper, a ...
متن کاملWhole-Plot Exchange Algorithms for Constructing D-Optimal Multistratum Designs
Multistratum experiments contain several different sizes of experimental units. Examples include split-plot, strip-plot designs, and randomized block designs. We propose a strategy for constructing a D-optimal multistratum design by improving a randomly generated design through a sequence of whole-plot exchanges. This approach preserves the design structure and simplifies updates to the informa...
متن کاملGenetic Algorithms Can Improve the Construction of D-Optimal Experimental Designs
We study the benefits of Genetic Algorithms, in particular the crossover operator, in constructing experimental designs that are D-optimal. To this purpose, we use standard Monte Carlo algorithms such as DETMAX and k-exchange as the mutation operator in a Genetic Algorithm. Compared to the heuristics, our algorithms are slower but yield better results. Key-Words: Genetic Algorithm, Memetic Algo...
متن کامل